Santos. Liangliang Lin, Sergey A. Starostin, Volker Hessel, Qi Wang. Meirelles. Eduardo A. Espinosa-Fuentes, John R. Castro-Suarez, Daniel Meza-Payares, Leonardo C. Pacheco-Londono, Samuel P. Hernández-Rivera. Cloudflare Ray ID: 5f7d02e6cd74033b Answer (i) Propanal and propanone can be distinguished by the following tests. A combined experimental and computational thermodynamic study of fluorene-9-methanol and fluorene-9-carboxylic acid. Bruno Brunetti, Andrea Ciccioli, Guido Gigli, Andrea Lapi, Nicolaemanuele Misceo, Luana Tanzi, Stefano Vecchio Ciprioti. Thermo-optical determination of vapor pressures of TNT and RDX nanofilms. –C Ricarda Kendler, Frieder Dreisbach, Reza Seif, Stefan Pollak, Marcus Petermann. Ferrocene: Temperature adjustments of sublimation and vaporization enthalpies. At this point, the benzophenone is isolated from the solution after drying the with anhydrous magnesium sulfate by … Manuel J.S. A. Rocha, Bernd Schröder, Lígia R. Gomes, John N. Low, and Luís M. N. B. F. Santos . Thermodynamic study of sublimation, solubility and solvation of bioactive derivatives of hydrogenated pyrido[4,3-b]indoles. If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices. Ribeiro da Silva, Mariana V. Gonçalves, Manuel J.S. Synonyms. The ether will dissolve benzophenone. Thermodynamic properties of the methyl esters of p-hydroxy and p-methoxy benzoic acids. Sergey P. Verevkin, Dzmitry H. Zaitsau, Christoph Schick, Florian Heym. Carlos F. R. A. C. Lima, Marisa A. Thermodynamic properties of 2,7-di- tert -butylfluorene – An experimental and computational study. Ana R.R.P. Combustion of ammonium perchlorate and ferrocene. M.J.S. Molecular Weight 226.23 . Lima, Luís M.N.B.F. Crystalline and liquid vapour pressures of the four p-monohalophenols: A thermodynamic study of their phase transitions. Vapor Pressures of Aluminum Tribromide and Aluminum Triiodide and Their Standard Sublimation Enthalpies. Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons. https://doi.org/10.1021/acs.molpharmaceut.5b00250, https://doi.org/10.1016/j.jct.2020.106278, https://doi.org/10.1016/j.tca.2020.178643, https://doi.org/10.1016/j.jct.2019.105973, https://doi.org/10.1007/s10973-019-08731-6, https://doi.org/10.1016/j.jct.2019.105964, https://doi.org/10.1016/j.tca.2019.178480, https://doi.org/10.1016/j.fluid.2018.10.020, https://doi.org/10.1016/j.jct.2018.09.011, https://doi.org/10.1016/j.jct.2018.07.023, https://doi.org/10.1016/j.fluid.2018.05.004, https://doi.org/10.1016/B978-0-444-64062-8.00015-2, https://doi.org/10.1016/j.tca.2017.06.024, https://doi.org/10.1016/j.ces.2017.05.008, https://doi.org/10.1016/j.jct.2016.12.012, https://doi.org/10.1007/s10973-016-5569-5, https://doi.org/10.1016/j.jct.2016.05.007, https://doi.org/10.1016/j.chemosphere.2016.05.014, https://doi.org/10.1016/j.tca.2016.05.001, https://doi.org/10.1016/j.chemosphere.2015.11.114, https://doi.org/10.1016/j.jct.2015.09.004, https://doi.org/10.1007/s10973-015-5004-3, https://doi.org/10.1016/j.chemosphere.2015.06.096, https://doi.org/10.1016/j.jct.2015.05.001, https://doi.org/10.1016/j.jct.2015.02.010, https://doi.org/10.1016/j.jct.2014.11.001, https://doi.org/10.1007/s10973-014-4088-5, https://doi.org/10.1016/j.jct.2014.06.002, https://doi.org/10.1016/j.jct.2014.04.026, https://doi.org/10.1016/j.tca.2014.05.033, https://doi.org/10.1016/j.talanta.2014.02.074, https://doi.org/10.1016/j.jct.2013.11.038, https://doi.org/10.1016/j.jct.2014.03.016, https://doi.org/10.1016/j.vacuum.2014.01.002, https://doi.org/10.1016/j.supflu.2013.10.019, https://doi.org/10.1134/S0010508214010067, https://doi.org/10.1007/s11224-013-0290-5, https://doi.org/10.1016/j.jct.2013.05.047, https://doi.org/10.1016/j.jct.2013.03.005, https://doi.org/10.1016/j.jct.2013.01.009, https://doi.org/10.1016/j.chemphys.2013.01.019, https://doi.org/10.1016/j.jct.2012.07.023, https://doi.org/10.1016/j.jct.2012.07.027, https://doi.org/10.1016/j.jct.2012.03.027, https://doi.org/10.1016/j.jct.2012.04.006, https://doi.org/10.1016/j.jct.2012.02.021, https://doi.org/10.1007/s11090-012-9364-1, https://doi.org/10.1016/j.jct.2012.01.025, https://doi.org/10.1016/j.jct.2011.09.006, https://doi.org/10.1016/j.jct.2011.08.017, https://doi.org/10.1016/j.talanta.2011.10.020, https://doi.org/10.1016/j.fluid.2011.05.008, https://doi.org/10.1016/j.tca.2010.11.034, https://doi.org/10.1007/s10973-009-0649-4, https://doi.org/10.1016/j.chemosphere.2010.02.059, https://doi.org/10.1007/s10973-009-0646-7, https://doi.org/10.1016/j.jct.2009.10.009, https://doi.org/10.1007/978-3-642-12278-1_14, https://doi.org/10.1007/s00339-008-4904-5, https://doi.org/10.1088/0957-0233/19/12/125102, https://doi.org/10.1007/s00217-008-0882-2, https://doi.org/10.1016/j.jct.2008.04.010, https://doi.org/10.1016/j.fluid.2008.02.001, https://doi.org/10.1016/j.tca.2007.05.005, https://doi.org/10.1007/s10973-006-7915-5, https://doi.org/10.1016/j.jct.2006.09.001.